Direct and indirect co-culture of bone marrow stem cells and adipose-derived stem cells with chondrocytes in 3D scaffold-free culture

نویسندگان

  • Loraine L.Y. Chiu
  • Juares Bianco
  • Renata Giardini-Rosa
  • Kristina Collavino
  • Stephen D. Waldman
چکیده

Background: The use of chondrocytes for cartilage tissue engineering is hampered by the limited number of chondrocytes that can be harvested and potential dedifferentiation during cell expansion. While stem cells is a promising approach to create a large population of differentiated cells, multiple growth factors are typically required for differentiation. Alternatively, co-culturing of stem cells with mature chondrocytes can induce differentiation. However, it is not clear which stem cell population and co-culturing method best supports chondrogenesis. While co-culture of stem cells with chondrocytes has been extensively shown to improve chondrogenesis in general, results from previous reports were convoluted by the use of 2D culture or scaffold materials, resulting in discrepancies with the comparison between direct and indirect cocultures. Methods: The purpose of this study was to investigate the extent of chondrogenic differentiation of direct and indirect co-culture of bone marrow stem cells (BMSCs) or adipose-derived stem cells (ASCs) with mature chondrocytes in 3D scaffold-free culture. For direct co-culture, cell pellets were created by centrifugation, consisting of chondrocytes alone or different proportions of stem cells to chondrocytes. For indirect co-culture, cell pellets of chondrocytes or stem cells were created individually and cultured with a separation by a trans-well membrane. Chondrogenic differentiation potential was assessed by quantification of DNA, GAG and collagen contents, as well as collagen I, collagen II and Safranin-O staining. Statistical significance was analyzed using one-way ANOVA with Tukey’s post-hoc tests. Results: Direct co-culture of chondrocytes with BMSCs resulted in superior chondrogenesis compared to all other co-culture methods. Cultures with the ratio of 3:1 BMSCs to chondrocytes stained positive for chondrogenic markers and displayed a uniform deposition of cartilaginous extracellular matrix. In addition, the extent of matrix deposition in direct BMSC co-cultures were comparable to growth factor differentiated BMSCs. Conclusions: Thus, BMSCs appear to be superior to ASCs in their differentiation capacity during coculture and a direct co-culture with chondrocytes (3:1 ratio) may be a feasible strategy for cartilage tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Chondrogenic Effects of Chondrocytes Cocultured With Murine Bone Marrow-Derived Mesenchymal Stem Cells

Purpose: Co-culture systems of marrow derived mesenchymal stem cells (mMSCs) with mature chondrocytes have theoretically been considered as a putative way of MSCs chondrogenic differentiation. MSCs differentiated in this system could be used for transplantation purpose without of any need to their purification since the cells with which MSCs are co cultured are native cartilage cells. Despite o...

متن کامل

Study of Chondrogenic Effects of Chondrocytes Cocultured With Murine Bone Marrow-Derived Mesenchymal Stem Cells

Purpose: Co-culture systems of marrow derived mesenchymal stem cells (mMSCs) with mature chondrocytes have theoretically been considered as a putative way of MSCs chondrogenic differentiation. MSCs differentiated in this system could be used for transplantation purpose without of any need to their purification since the cells with which MSCs are co cultured are native cartilage cells. Despite o...

متن کامل

Comparison of the Ex Vivo Expansion of UCB-Derived CD34+ in 3D DBM/MBA Scaffolds with USSC as a Feeder Layer

    Objective(s): Ex vivo expansion of hematopoitic stem cells is an alternative way to increase umbilical cord blood (UCB)-CD34+ cells for bone marrow transplantation. For this purpose demineralized bone matrix (DBM) and mineralized bone allograft (MBA) as two scaffolds based on bone matrix and stem cell niche, were simultaneously used to enhance the effect of human mesenchymal pro...

متن کامل

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

Growth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton's jelly of umbilical cord on PBMCs

Objective(s):Immunosuppressive property of mesenchymal stem cells (MSCs) has great attraction in regenerative medicine especially when dealing with tissue damage involving immune reactions. The most attractive tissue sources of human MSCs used in clinical applications are bone marrow (BM), adipose tissue (AT), and Wharton's jelly (WJ) of human umbilical cord. The current study has compared immu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016